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Abstract We compare the different convergence criteria available for cluster expansions
of polymer gases subjected to hard-core exclusions, with emphasis on polymers defined as
finite subsets of a countable set (e.g. contour expansions and more generally high- and low-
temperature expansions). In order of increasing strength, these criteria are: (i) Dobrushin
criterion, obtained by a simple inductive argument; (ii) Gruber-Kunz criterion obtained
through the use of Kirkwood-Salzburg equations, and (iii) a criterion obtained by two of
us via a direct combinatorial handling of the terms of the expansion. We show that for
subset polymers our sharper criterion can be proven both by a suitable adaptation of Do-
brushin inductive argument and by an alternative—in fact, more elementary—handling of
the Kirkwood-Salzburg equations. In addition we show that for general abstract polymers
this alternative treatment leads to the same convergence region as the inductive Dobrushin
argument and, furthermore, to a systematic way to improve bounds on correlations.

Keywords Cluster expansion · Polymer gas · Kirkwood-Salzburg equations

R. Bissacot · A. Procacci (�)
Departamento de Matemática-ICEx, UFMG, CP 702, Belo Horizonte, MG 30161-970, Brazil
e-mail: aldo@mat.ufmg.br

R. Bissacot
e-mail: rodrigo.bissacot@gmail.com

R. Bissacot · R. Fernández
Laboratoire de Maths Raphael Salem, Université de Rouen, Rouen 76801, France

R. Fernández
e-mail: Roberto.Fernandez@univ-rouen.fr

R. Fernández
Department of Mathematics, Utrecht University, P.O. Box 80010, 3508 TA Utrecht, The Netherlands
e-mail: R.Fernandez1@uu.nl

mailto:aldo@mat.ufmg.br
mailto:rodrigo.bissacot@gmail.com
mailto:Roberto.Fernandez@univ-rouen.fr
mailto:R.Fernandez1@uu.nl


On the Convergence of Cluster Expansions for Polymer Gases 599

1 Introduction

The most basic and frequent applications of cluster expansions deal with (log of) partition
functions of random geometric objects subjected only to hard-core exclusions. The relevant
mathematical structure was first formalized by Gruber and Kunz [13] for the case of objects
defined by subsets of a countable set. They called these objects polymers. A decade later
Kotecký and Preiss [14] introduced more general families of objects that are not necessarily
subsets of an underlying set and whose “hard-core” interaction is defined by an incompat-
ibility relation. This more general objects will be called abstract polymers in the sequel,
while subset polymers will be those introduced by Gruber and Kunz.

In their seminal paper, Gruber and Kunz used Kirkwood-Salzburg equations to determine
convergence radii. This GK approach, however, did not become popular and instead prac-
titioners turned to bounds obtained by first showing that cancellations yield a majorizing
expansion in terms of tree diagrams. The convergence condition is proved by inductively
summing the “leaves” of the expansion. The genesis of this approach is attributed to Cam-
marota [6], and the canonical reference is the excellent review by Brydges [4]. In contrast,
Kotecký and Preiss introduced an inductive argument that does not make any reference to the
actual expression of the series. This argument, helped by a refinement by Dobrushin [7], be-
came the argument-of-choice in further developments [3, 15, 16, 20, 22, 23]. There are good
reasons for this: the inductive argument leads to notoriously simpler convergence proofs
and stronger results than the more laborious tree sums (see [8] for a remarkable overview
of consequences of these results). In particular it leads quite naturally to a bound on corre-
lations and “pinned” free energies. But there is a downside: the argument works “too well”.
While Dobrushin’s condition is perfectly designed to survive the inductive step, the method
contains no hint on how to obtain further improvements.

To break this impasse, in [9] we went back to basics. We took a hard look at the cluster
expansion in full and studied it avoiding inequalities as much as possible. The breakthrough
came from a seldomly remembered paper by Oliver Penrose [17] (with the important ex-
ception of the paper by Pfister [18], where we learnt this identity) in which the series is
written in terms of a tree-grap identity involving trees determined by compatibility con-
straints. This yields a series whose partial sums can be generated as successive applications
of a fixed transformation. Convergence criteria are then found by suitably bounding this
transformation. In this way we were able to improve Dobrushin criterion and, furthermore,
explain the loss of precision of preexisting criteria as incomplete accounting of Penrose
constraints. Thus, on the positive side we managed to clarify the role of different approx-
imations and to obtain stronger results, while leaving in the background a tree expansion
that could be used for further refinements. On the negative side, however, our method lacks
the elegance and economy of the inductive Kotecký-Preiss-Dobrushin (KPD) approach. We
have already exploited the positive side to improve results in a number of well-studied ap-
plications [2, 10–12]. The present paper addresses the negative side.

In [9] we also applied our new criterion to subset polymers, resorting to some simplifi-
cations to obtain a expression suitable for computations. We were surprised to find out that
the “new” resulting criterion while being clearly better than Dobrushin’s is in fact identical
to the long forgotten Gruber-Kunz bound. There is only a small difference in our favor: the
GK bound involve a strict inequality while in ours the inequality is not strict. That is why
we call our bound the extended GK criterion. This state of affairs motivated a number of
questions that surfaced repeatedly in discussions with our colleagues and motivated the PhD
thesis of one of us [1]:
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(Q1) Does the use of Kirkwood-Salzburg equations à la Gruber-Kunz yield better bounds
than the inductive KPD approach?

(Q2) Can Kirkwood-Salzburg equations lead to an alternative proof of our new criterion?
(Q3) More ambitiously: Is there an inductive proof—à la Dobrushin—of our new criterion?

In this paper we answer these questions for the case of subset polymers, and provide
partial answers for general abstract polymers. In more detail we prove the following:

(A1) For subset polymers:
(A1.1) An alternative handling of the Kirkwood-Salzburg equations proves the ex-

tended GK criterion. Thus, Kirkwood-Salzburg equations can indeed be used
to prove our new convergence criterion and bounds on correlations for these
polymers. The alternative handling consists in replacing the Banach-space
fixed-point theorem of the original approach by a more elementary argument
on convergence of series with positive terms. The extended criterion follows
from writing this expansion as a limit of iterations of a fixed transformation,
following an idea from [9].

(A1.2) Suitably adapted, an inductive KPD-approach can also be used to prove the
extended GK criterion. Therefore, for subset polymers the three approaches—
GK, inductive KPD and ours—are equivalent.

(A2) Likewise, the GK approach with modified handling of the Kirkwood-Salzburg equa-
tions is equivalent to the inductive KPD approach for general abstract polymers.

In the general setup of abstract polymers, we are at present unable to prove our improved
criterion using either of these two equivalent approaches. The obstacle, explicitly seen in
our treatment below, is the use of factorized majorizing weights inherent to both the GK and
the KPD approaches.

The paper is organized so to be reasonably self-contained. In Sect. 2 we review the gen-
eral definition of abstract and subset polymer gases and we present and compare the different
convergence criteria. In Sect. 3 we show how to obtain the (extended) Gruber-Kunz crite-
rion through an inductive argument. We adapt a simple argument by Miracle-Solé [15] that
relies on the alternating-sign property of the truncated coefficients. In Sect. 4 we review
Gruber-Kunz setting of Kirkwood-Salzburg equations for subset polymers and prove the ex-
tended GK bound by introducing the alternative treatment of these equations. In Sect. 5 we
show how Dobrushin criterion can also be obtained from Kirkwood-Salzburg equations in
the general abstract case. We conclude with some final comments and suggestions.

2 Polymer Gases and Convergence Criteria

First, some general notation. For a set U we denote |U | its cardinality and 1{U} its indicator
function.

2.1 The Abstract Polymer Gas

An abstract polymer system is a triple (P, R,z) where

• P is a countable set, whose elements γ we call polymers, following Gruber and Kunz.
• R ⊂ P × P is a symmetric and reflexive relation. When (γ, γ ′) ∈ R, we write γ �∼ γ ′ and

say that γ and γ ′ are incompatible. Conversely, if (γ, γ ′) /∈ R we say that the polymers γ

and γ ′ are compatible and we write γ ∼ γ ′. Note that the assumption that R is reflexive
implies that γ �∼ γ for all γ ∈ P .
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• z : P → C : γ �→ zγ is the activity function. The number zγ is called the activity of the
polymer γ .

The corresponding polymer gas is defined by complex-valued measures. For each finite
family of polymers � ⊂ P a measure is defined by assigning, to each polymer configuration
{γ1, . . . , γn} ⊂ �, n ≥ 0, the weight

P�(z, γ1, . . . , γn) = 1

��(z)
zγ1zγ2 . . . zγn

∏

1≤i<j≤n

1{γi∼γj } (2.1)

with the convention {γ1, . . . , γn} = ∅ when n = 0 and P�(z,∅) = 1/��(z). Here

��(z) = 1 +
∑

n≥1

1

n!
∑

(γ1,...,γn)∈�n

zγ1zγ2 . . . zγn

∏

1≤i<j≤n

1{γi∼γj }

= 1 +
∑

n≥1

∑

{γ1,...,γn}∈�

zγ1zγ2 . . . zγn

∏

1≤i<j≤n

1{γi∼γj } (2.2)

normalizes P�(z,�) = 1. The equality between the first and second lines follows from the
fact that, in the presence of compatibility requirements, only n-uples with different compo-
nents contribute. Restricted to positive fugacities, {zγ ≥ 0}γ∈P , the measure P� is a proba-
bility measure on the space of subsets of � and P�(z, γ1, . . . , γn) is interpreted as the prob-
ability of observing exactly polymers γ1, . . . , γn out of the family �. In general, weights are
allowed to be complex to settle analyticity questions. The normalization constant ��(z) is
interpreted as the grand-canonical partition function of the family �. This partition function
��(z) is the key function from which all “physical quantities” of the system can be derived.
These quantities include the “pressure” of the system

P�(z) = 1

|�| log��(z) (2.3)

and the correlations

φ�(z, γ1, . . . , γp) =
[
zγ1 . . . zγp

∏

1≤i<j≤p

1{γi∼γj }
]

��\�({γ1,...,γp})(z)
��(z)

, (2.4)

assuming {γ1, . . . , γp} ⊂ � and denoting, for any finite family of polymers X,

�(X) = {γ ∈ P : ∃γ ′ ∈ X such that γ �∼ γ ′} (2.5)

—the neighborhood of X.
These functions, when z ≥ 0, represent the probability that the set of polymers

{γ1, . . . , γp} = U is present in the volume � independently of all other polymers. So, ac-
cording to the above definitions, we can also write for U = {γ1, . . . , γp} ⊂ �

φ�(z, γ1, . . . , γp) = φ�(z,U) =
[∏

γ∈U

ργ

]
1{U compatible} φ̄�(z,�(U)),

where U compatible means either |U | ≤ 1, or |U | ≥ 2 with any pair {γ, γ ′} ⊂ U compatible
and

φ̄�(z,�(U)) = ��\�(U)(z)

��(z)
.
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So, if X ⊂ P is any set of polymers, we see from that all is decided by the ratios

φ̄�(z,X) = ��\X(z)

��(z)
(2.6)

which Gruber and Kunz baptized the reduced correlations.
The main issues of the theory are the existence and analyticity with respect to fugacities

of the � → P limits of the pressure and correlation functions. The most detailed way of
answering these questions is by writing log��(z) as a formal power series in the fugacities.
This series, historically called Mayer series, takes the form

log��(z) =
∞∑

n=1

1

n!
∑

(γ1,...,γn)∈�n

φT (γ1, . . . , γn) zγ1zγ2 . . . zγn , (2.7)

where the truncated coefficients φT (γ1, . . . , γn) depend only on the compatibility graph of
the argument. This graph has vertex set {1,2, . . . , n} and edge set {{i, j} ⊂ {1,2, . . . , n} :
γi � γj }. [Warning! The truncated coefficients do not require compatibility of their argu-
ments, hence the analogous of the second line of (2.2) is not valid for (2.7).] The methods
discussed in this paper do not make use of the actual expression of the truncated coeffi-
cients (which can be found, for instance, in [4–6]). Below we only need the alternating-sign
property

∣∣φT (γ1, . . . , γn)
∣∣ = (−1)n−1φT (γ1, . . . , γn), (2.8)

which can be easily derived from the Penrose identity [17] (see e.g. [9] and [20]) or by a
simple induction argument [15].

In view of (2.6) it is natural to focus on the differences

��
γ (z) = log��(z) − log��\{γ }(z)

=
∞∑

n=1

1

n!
∑

(γ1,...,γn)∈�n

∃i: γi=γ

φT (γ1, . . . , γn) zγ1 . . . zγn . (2.9)

Since, for � = {γ1, . . . , γk},

log��(z) =
k∑

i=1

��\{γ1,...,γi−1}
γi

(z) (2.10)

(with the convention {γ1, . . . , γ0} = ∅ and �∅
γ (z) = 1) and, for {γ1, . . . , γp} ⊂ �,

φ̄�

(
z, {γ1, . . . , γp}) = exp

(
−

p∑

i=1

�
�\{γi+1,...,γp}
γi (z)

)
. (2.11)

In order to state the theorems of the next section, we will also need to consider another
series, directly related to ��

γ (z), namely

	�
γ (z) = ∂

∂zγ

log��(z�)

=
∞∑

n=0

1

n!
∑

(γ1,γ2,...,γn)∈�n

φT (γ, γ1, . . . , γn)zγ1 . . . zγn . (2.12)
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Series (2.7), (2.9) and (2.12) are examples of cluster expansions; we will focus on the
last two. Analyticity results are obtained from it on the basis of the observation that, for a
family of positive numbers {ργ }γ∈P , the positive-term series

|�|�γ (ρ) =
∞∑

n=1

1

n!
∑

(γ1,...,γn)∈�n

∃i: γi=γ

|φT (γ1, . . . , γn)|ργ1 · · ·ργn, (2.13)

|	|�γ (ρ) =
∞∑

n=0

1

n!
∑

(γ1,γ2,...,γn)∈�n

|φT (γ, γ1, . . . , γn)|ργ1 . . . ργn (2.14)

dominates (2.9) term-by-term for |zγ | ≤ ρ�. Therefore, convergence of this last series im-
plies the absolute and uniform convergence of (2.9) and (2.12) in the polydisc

Dρ = {z : |zγ | ≤ ργ } (2.15)

and its analyticity (with respect to the fugacities) in its interior. In fact, the alternating-sign
property (2.8) implies that

|�|�γ (ρ) = −��
γ (z = −ρ), (2.16)

|	|�γ (ρ) = 	�
γ (z = −ρ). (2.17)

Thus, for finite �, the convergence of the series (2.13) and (2.14) is a necessary and suf-
ficient condition for the convergence of the cluster expansion (2.9) and (2.12) in the poly-
disc Dρ . By (2.10), (2.11) and (2.12) these properties are inherited by the correlations and
the pressure. To extend these existence and analyticity results to the limit � → P the strat-
egy is to prove that the convergence of (2.13) happens for �-independent values of ρ�.

2.2 Convergence Criteria for Abstract Polymer Gases

We focus on two criteria. First, Dobrushin’s:

Theorem 2.1 [7] Let μ = {μγ }γ∈P and ρ = {ργ }γ∈P be collections of nonnegative numbers
such that

ργ ϕD
γ (μ) ≤ μγ , ∀γ ∈ P, (2.18)

with

ϕD
γ (μ) =

∏

γ̃∈�(γ )

(1 + μγ̃ ), (2.19)

then the series |�|�γ (ρ), |	|�γ (ρ) defined in (2.13), (2.14) are convergent and furthermore

|	|�γ (ρ) ≤ ϕD
γ (μ), (2.20)

|�|�γ (ρ) ≤ log(1 + μγ ). (2.21)
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We denote �(γ ) ≡ �({γ }) the neighborhood of γ , namely

�(γ ) = {γ̃ ∈ P : γ̃ �∼ γ }.
Here is the second criterion, which improves Dobrushin’s.

Theorem 2.2 [9] Let μ = {μγ }γ∈P and ρ = {ργ }γ∈P be collections of nonnegative numbers
such that

ργ ϕFP
γ (μ) ≤ μγ , ∀γ ∈ P (2.22)

with

ϕFP
γ (μ) = ��(γ )(μ)

= 1 +
∑

n≥1

1

n!
∑

(γ1,...,γn)∈P n

μγ1 . . .μγn

∏

1≤i<j≤n

1{γi∼γi }
n∏

i=1

1{γi �∼γ } (2.23)

then the series |�|�γ (ρ), |	|�γ (ρ) defined in (2.13), (2.14) are convergent and furthermore

|	|�γ (ρ) ≤ ϕFP
γ (μ), (2.24)

|�|�γ (ρ) ≤ − ln(1 − ργ )ϕFP
γ (μ)−μγ . (2.25)

The form (2.18) of Dobrushin criterion shows more clearly the improvement brought by
Theorem 2.2. In particular, since ϕD

γ (μ) ≥ ϕFP
γ (μ), for any fixed γ,μ, the convergence radius

RFP = {μγ /ϕFP
γ (μ)}γ∈P given by Theorem 2.2 is always greater than the Dobrushin’s cri-

terion convergence radius RD = {μγ /ϕD
γ (μ)}γ∈P (the μ’s here are free parameters that can

be adjusted to maximize the radii RD,RFP). The upper bound (2.25) is not explicitly given
in reference [9]. It can be proven, however (see [2]), in a straightforward way from (2.24).
Moreover it is easy to see (see again [2]) that (2.25) is an improvement of (2.21) for any
ρ ≤ RD.

The original statement by Dobrushin is obtained by substituting μγ + 1 = eaγ . In terms
of these exponential weights the criterion is the existence of positive numbers a = {aγ }γ∈P
and ρ = {ργ }γ∈P such that

ργ ≤ (eαγ − 1) exp

(
−

∑

γ̃∈�(γ )

αγ̃

)
(2.26)

and the bound (2.21) becomes:

|�|�γ (ρ) ≤ aγ . (2.27)

The earlier Kotecký-Preiss criterion [14] was the first to take the form (2.18), but with
ϕD

γ replaced by the less efficient

ϕKP
γ = exp

{ ∑

γ̃∈�(γ )

μγ̃

}
.

The usual form of this condition, obtained upon substituting μγ = ργ eaγ , is

∑

γ̃∈�(γ )

ργ̃ eaγ̃ ≤ aγ . (2.28)
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2.3 Subset Gases: Definition and Convergence Criteria

Subset gases are particular types of polymer gases that appear in most of the uses of the
cluster expansion in statistical mechanics. Their definition requires a countable set V that
acts as an underlying “space”. Polymers are then simply defined as the finite non empty
subsets of V, i.e.

PV = {γ ⊂ V : 0 < |γ | < ∞}
with non-empty intersection as incompatibility relation:

γ �∼ γ ′ ⇐⇒ γ ∩ γ ′ �= ∅. (2.29)

Polymers can now be measured through its cardinality, so it makes sense about large
and small polymers. The definition of the gas is completed by a family of activities z =
{zγ ∈ C}γ∈P .

In fact, the following discussion may apply, more generally, to colored subset gases.
These are systems in which polymers are endowed with some further attribute—the color—
taken from some space C . Formally, colored polymers are pairs γ = (γ , c) with γ ⊂ V

finite—the support of γ —and c ∈ C . Conspicuous examples are the “thick” contours of
Pirogov-Sinai theory (see e.g. [21, Chap. II]) in which colors correspond to configurations
on γ .

For subset gases, the different objects of interest refer to parts of the underlying V. Thus,
subsets of V both are polymers and determine “finite-window” magnitudes. Because of
their geometrical interpretation, subsets playing the latter role will be called “regions”. The
corresponding definitions—analogous to those for abstract polymers but with a slight and
natural change in notation—are as follows. Let � ⊂ V denote a finite subset of V and let
P� = {γ ∈ PV : γ ⊂ �}. Let {γ1, . . . , γn} ⊂ P�, the probability weights P� are defined as
in (2.1) with grand-canonical partition function

��(z) = 1 +
∑

n≥1

∑

{γ1,...,γn}⊂P�|γi |≥1, γi∩γj =∅

zγ1 . . . zγn . (2.30)

Please note that now � is a set of the underlying V while in the in the previous section �

was the set of polymers. With these partition functions, the pressure is defined also by (2.3)
while for the correlations (2.4) we have the simplification that �({γ1, . . . , γp}) is replaced
by

⋃p

i=1 γi which can now be viewed as a subset of the underlying V. Therefore the reduced
correlations take the form (2.6) with X ⊂ � ⊂ V for the partitions (2.30). The analogous
of (2.9) are

��
x (z) = log��(z) − log��\{x}(z)

=
∞∑

n=1

1

n!
∑

(γ1,...,γn)∈Pn
�∃i: γi�x

φT (γ1, . . . , γn) zγ1 . . . zγn (2.31)

for x ∈ �. The reconstruction formulas (2.10)–(2.11) hold with γi → xi . Note also that in
the specific case of the subset gas the series ��

x (z) and 	
{x}
� (z) are in a very simple relation.

Indeed,

	
{x}
� (z) = ∂

∂z{x}
log��(z) = 1

��(z)

∂��(z)

∂z{x}
= ��\{x}(z)

��(z)
= exp{−��

x (z)}
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whence, recalling (2.16) and (2.17), we get the identity

|	|{x}
� (r) = exp{|�|�x (ρ)}. (2.32)

The convergence criteria for these polymers involve factorized weights of the form

μγ =
∏

x∈γ

ξx ≡ ξ γ (2.33)

for some family ξ = {ξx}x∈V with each ξx > 0. These single-site weights are always larger
than one and are traditionally parametrized as ξx = eax with ax > 0. In the literature, the ax

are invariably chosen independent of x and equal to some common value a. With this choice

μγ = ea|γ |. (2.34)

In the sequel, however, we work with the more general choice (2.33). This introduces a
minimal notational cost, but it reveals more clearly the essence of the different arguments
and leads to more precise formulas.

The most widely used criterion is, in fact, Kotecký and Preiss’ (2.28), written in the form

sup
x∈V

∑

γ∈PV
γ�x

ργ ea|γ | ≤ a. (2.35)

Dobrushin criterion (Theorem 2.1) with the substitution μγ = ργ ea|γ | yields a strengthening
of this condition that, however, has not been much used in practice. The earlier work of Gru-
ber and Kunz contained already an even better condition (but upper bounds on correlations
were divergent at the edge of convergence radius) .

Theorem 2.3 [13] Let a > 0 and ρ = {ργ }γ∈PV
be collections of nonnegative numbers such

that

sup
x∈V

∑

γ∈PV
x∈γ

ργ ea|γ | < ea − 1. (2.36)

Then the functions (2.31) are analytic in the interior of the polydisc Dρ and satisfy

|�|�x (ρ) ≤ − ln

{
1 − 1

ea

[
1 + sup

x∈V

∑

γ∈PV
x∈γ

ργ e|γ |
]}

(2.37)

for all finite � ⊂ V and x ∈ �.

Theorem 2.2 yields a stronger result:

Theorem 2.4 [9] Let a = {ax}x∈V and ρ = {ργ }γ∈PV
be collections of nonnegative numbers

such that ∑

γ∈PV
x∈γ

ργ e
∑

y∈γ ay ≤ eax − 1. (2.38)

Then the functions (2.31) are analytic in the interior of the polydisc Dρ and satisfy

|�|�x (ρ) ≤ ax (2.39)

for all finite � ⊂ V and x ∈ �.
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This result is obtained from (2.22)–(2.23) through some rather rough estimates. The ar-
gument is given in [9] for the choice (2.34), for completeness we show below the proof
for general factorized weights. The bound (2.39) is the coarsest of a sequence of sharper
bounds, as stated in Proposition 4.1 below.

Proof We shall prove that condition (2.38) implies (2.22) for

μγ = e
∑

x∈γ ax . (2.40)

With this choice the function (2.23) becomes

ϕFP
γ (μ) = 1 +

|γ |∑

n=1

1

n!
∑

(γ1,...,γn)∈P n
V

n∏

i=1

ργi
e
∑

y∈γi
ay

∏

1≤i<j≤n

1{γi∩γj =∅}
n∏

i=1

1{γi∩γ �=∅}. (2.41)

We now observe that a necessary condition to satisfy the indicator functions is the existence
of different points xi ∈ γi ∩ γ , i = 1, . . . , n that each γi intersect γ at a different point. Of
course, the whole intersections must be disjoint but we only use the existence of some set
of different points. This approximation is reasonably if the contours involved are small and
very bad otherwise. In favorable case, this over-weighting of large contours may be masked
by the smallness of the corresponding activities. Therefore,

ϕFP
γ (μ) ≤ 1 +

|γ |∑

n=1

1

n!
∑

(x1,...,xn)∈γ n

xi �=xj

n∏

i=1

[
∑

γ∈P
xi∈γ

ργ e
∑

y∈γ ay

]
.

Applying hypothesis (2.38) we obtain

ϕFP
γ (μ) ≤ 1 +

|γ |∑

n=1

∑

{x1,...,xn}⊂γ

n∏

i=1

[eaxi − 1]

=
∏

x∈γ

[(eax − 1) + 1] = e
∑

x∈γ ax ,

and so ργ ϕFP
γ (μ) ≤ ργ e

∑
x∈γ ax = μγ showing that (2.22) holds. Finally, bound (2.24) implies

|	|�x (ρ) ≤ ϕFP
{x} ≤ eax

so using (2.32) we get the bound (2.39). �

2.4 Comments and Overview of Methods and Results

The preceding criteria suggested us a number of comments and questions that we answer in
the sequel.

(C1) While Gruber-Kunz criterium improves the “naive” Dobrushin criterion obtained by
the application of (2.18) to subset gases, the actual condition (2.38) is the natural
analogue of (2.26) under the replacement

∑
γ̃∈�(γ ) by

∑
γ̃�x . This suggests that a

correspondingly adapted Dobrushin argument could lead to the same result. This is
true, as discussed in Sect. 3. In fact such an argument proves the strongest criterion of
Theorem 2.4.
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(C2) The difference between convergence criteria of Theorems 2.4 and 2.3 looks small in-
deed. But the non-sharp inequality is clearly out of reach of the Gruber-Kunz treatment
of Kirkwood-Salzburg equations, based on establishing strict contractions. Is this an
inherent limitation of studies based on such equations? The answer is no, as we dis-
cuss in Sect. 4: The same equations processed in a different way do yield a proof of
Theorem 2.4.

(C3) Having proved that Dobrushin’s and modified Gruber-Kunz approaches yield the same
results for subset gases, it is natural to wonder whether this equivalence extends to
general abstract polymers. The answer is yes, and we show this in Sect. 5.

There is an aspect, however, in which the modified GK-approach excels Dobrushin. The
former leads to a whole sequence of successively better bounds for the ratios of partition
functions, improving (2.27) or (2.39). See Propositions 4.1 and 5.1. A similar hierarchy of
bounds appears in our general approach based on the Penrose identity [9].

The discussion that follows will clearly show the key point of contact between Dobrushin
induction argument and Kirkwood-Salzburg equations. For the case of subset polymers, both
rely on the site-addition identity

�Y∪{x}(z) = �Y (z) +
∑

S⊂Y
|S|≥0

z{x}∪S �Y\S(z) (2.42)

valid for any Y ∈ P and any x ∈ V\Y . This identity follows immediately from definition
(2.30). In the general abstract setting there is an analogous polymer-addition identity conse-
quence of (2.2):

�Z∪γ0(ρ) = �Z(z) + zγ0 �Z\�∗(γ0)(z) (2.43)

valid for any finite family Z ⊂ P and any polymer γ0 ∈ P\Z. Here �∗(γ0) denotes the
punctured neighborhood of γ0:

�∗(γ0) = �(γ0)\{γ0}.
Identity (2.43), called “the fundamental identity” by Scott and Sokal ([20], Sect. 3.1,

formula (3.3)) is, as explained there, the key point of inductive proofs à la Dobrushin. The
Kirkwood-Salzburg equations set up by Gruber and Kunz, on the other hand, follow from
a rewriting of this fundamental identity. It is no surprise that both methods yield equivalent
results.

3 Induction Method for the Subset Gas

Let us start by proving Theorem 2.4 à la Dobrushin. As in the original Dobrushin argument,
the proof is amazingly short. From identity (2.16) [consequence of the alternating-sign prop-
erty] and the definition of ��

x [first line of (2.31)] we see that the theorem is equivalent to
the following proposition.

Proposition 3.1 Let a = {ax}x∈V and ρ = {ργ }γ∈P be collections of nonnegative numbers
such that

∑

γ∈PV
x∈γ

ργ e
∑

y∈γ ay ≤ eax − 1 (3.1)
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then

��\{x}(−ρ)

��(−ρ)
≤ eax (3.2)

for any finite � ⊂ V and any x ∈ �.

Proof We proceed by induction on |�|. If |�| = 1, � = {x}, hypothesis (3.1) implies that

ρ{x} eax ≤
∑

γ∈PV
x∈γ

ργ e
∑

y∈γ ay ≤ eax − 1.

Hence,

�{x}\{x}(−ρ)

�{x}(−ρ)
= 1

�{x}(−ρ)
= 1

1 − ρ{x}
≤ 1

1 − (1 − e−ax )
= eax .

Assume (3.2) is true for |�| ≤ n. Telescoping we conclude that

��\S(−ρ)

��(−ρ)
≤ e

∑
y∈S ay (3.3)

for any S ⊂ �. Take x �∈ �. The site-addition identity (2.42) implies

��∪{x}(−ρ)

��(−ρ)
= 1 −

∑

S⊂�

ρ{x}∪S

��\S(−ρ)

��(−ρ)

which by (3.3) yields

��∪{x}(−ρ)

��(−ρ)
≥ 1 −

∑

S⊂�

ρ{x}∪Se
∑

y∈S ay

= 1 − e−ax
∑

γ∈P:x∈γ

ργ e
∑

y∈γ ay .

Finally, using hypothesis (3.1),

��∪{x}(−ρ)

��(−ρ)
≥ 1 − e−ax (eax − 1) = e−ax .

Hence (3.2) holds for regions � with n + 1 sites. �

We basically adapted the version of Miracle-Solé [15], who used identity (2.16) to sim-
plify the original proof of Dobrushin which did not resort to such identity.

4 Gruber-Kunz Formalism for the Subset Gas

In this section we revise the steps followed by Gruber and Kunz in [13] to arrive to their
Theorem 2.3 and present the modifications needed to arrive to Theorem 2.4. In fact, the
argument of Gruber and Kunz was presented in terms of a “gas of partitions” which basically
corresponds to a gas of subsets with single-site fugacities equal to one. We have transcribed
it to the framework of general subset gases.
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4.1 The Proof by Gruber and Kunz

Gruber and Kunz obtained their analyticity results by setting up linear equations for the
reduced correlations φ̄�(z,X), defined by (2.6) (but of course in the present case of the
subset gas, � and X in (2.6) are subsets of the underlying set V). Such set of linear equations
involves a �-independent operator K . To find these equations Gruber and Kunz applied the
so called “algebraic method” following closely Sect. 4.4. of [19]. However, in the context
of the subset gas, due to the fact that φ̄�(z,X) are just ratios of partitions functions, their
equations ([13], eq. (28), p. 146) can be derived much more easily as follows. We start with
the site-addition identity (2.42) written rather as a site-deletion identity, in the form

��\X(z) = ��\(X\{x1})(z) −
∑

S⊂�\X
|S|≥0

z{x1}∪S��\(X∪S)(z) (4.1)

valid for any finite � ⊂ V and any x1 ∈ X ⊂ �. Thus, upon dividing both sides by ��(z),

φ̄�(z,X) = φ̄�(z,X\{x1}) −
∑

S⊂�\X
|S|≥0

z{x1}∪S φ̄�(z,X ∪ S). (4.2)

These are what Gruber and Kunz call the Kirkwood-Salzburg equations for the gas of sub-
sets. In these equations x1 is some point of X chosen once and for all, for instance as the
smallest site of X in some fixed enumeration of V.

In order to write this in terms of a �-independent operator, it is necessary to include the
restriction X ⊂ � as a factor, so to extend the functions φ̄�(z,X), defined only when X ⊂ �

to all X ∈ V. Let us then define

χ�(X) = 1{X⊂�} (4.3)

and denote

φ̃�(z,X) = χ�(X) φ̄�(z,X). (4.4)

From (4.2) we obtain

φ̃�(z,X) =
{

χ�(X)φ̃�(z,X\{x1})
χ�(X)

}
− χ�(X)

∑

S∈P∗
V

S∩X=∅

ρ{x1}∪Sφ̃�(z,X ∪ S), (4.5)

where P ∗
V

= PV ∪ ∅ and the upper line holds when |X| ≥ 2 while the lower one when
|X| = 1. The latter includes the condition φ̄�(z,∅) = 1 which is better written as an inho-
mogenity of the linear system by introducing

α(X) = 1{|X|=1}. (4.6)

In this way we conclude that the function

φ̃�(z)( · ) ≡ φ̃�(z, ·) : P ∗
V

−→ C

satisfies the linear equation

φ̃�(z) = χ�α + χ�Kzφ̃�(ρ), (4.7)
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where Kz is the linear operator on the space of complex-valued functions on P defined by

(Kzf )(X) = 1{|X|≥2}f (X\{x1}) −
∑

S∈P∗
V

S∩X=∅

z{x1}∪S f (X ∪ S). (4.8)

At this point Gruber and Kunz resort to a contraction argument in Banach spaces. For
this—having in mind weights of the form (2.33)—they associate to each family ξ = {ξx}x∈V,
with each ξx > 0, the Banach space Bξ of complex functions defined on non empty finite
subsets of V (i.e. on PV) with the norm

‖f ‖ξ = sup
X∈PV

|f (X)|
ξX

, (4.9)

where, for any X ⊂ V, we abbreviate ξX = ∏
x∈X ξx .

We have,

∣∣(Kzf )(X)
∣∣ ≤ ξX\{x1}‖f ‖ξ +

∑

S∈P∗
V

S∩X=∅

|z{x1}∪S |ξX∪S‖f ‖ξ

= ξX‖f ‖ξ

1

ξx1

[
1 +

∑

γ∈PV
x∈γ

|zγ |ξ γ

]
. (4.10)

Therefore Kz is a bounded operator in Bξ with norm bounded by

‖Kz‖ξ ≤ sup
x∈V

1

ξx

[
1 + sup

x∈V

∑

γ∈PV
x∈γ

|zγ |ξ |γ |
]
. (4.11)

If z is such that

‖Kz‖ξ < 1, (4.12)

(4.7) has a unique solution in the Banach space Bξ given by

φ̃�(z) = [1 − χ�Kz]−1χ�α. (4.13)

By construction, this solution is analytic in z and furthermore

‖φ̃�(z)‖ξ ≤ (1 − ‖Kz‖ξ )
−1. (4.14)

As the condition (4.12) is independent of � (4.13) makes sense in the limit � → V and
yields the convergence φ̃�(z) → φ(z) where the latter is the unique solution of (4.13) with-
out the factors χ�. Choosing ξx = ea we see that the condition

1

ea

[
1 + sup

x∈V

∑

γ∈PV
x∈γ

ργ e|γ |
]

< 1 (4.15)

implies the validity of all these properties for z ∈ Dρ for all γ ∈ PV, plus analyticity in the
interior of Dρ .
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4.2 Extended Gruber-Kunz Criterion

To extend the convergence region so to include equality in (4.15) and to improve
bound (2.37) we have to abandon the precedent contraction strategy and find an alterna-
tive way to make sense of (4.13). In fact, this expression corresponds to the multivariate
formal power series in z

χ�

∑

n≥0

[(Kz)
n(χ�α)](X). (4.16)

Thus, by the reasons invoked above (4.15), it is enough to find a polydisc Dρ—independent
of � and X—where all these series converge uniform and absolutely. A glimpse at the
definition (4.8) of the operators Kz shows that if |zγ | ≤ ργ for all γ ∈ PV, each series (4.16)
is term-by-term dominated by the series with positive terms

�ρ(X) =
∑

n≥0

[(K−ρ)
nα](X). (4.17)

In particular, the reduced correlations satisfy

∣∣φ̄�(z,X)
∣∣ ≤ φ�(−ρ,X) = ��\X(−ρ)

��(−ρ)
≤ �ρ(X) (4.18)

for all finite � and all X ⊂ �, x ∈ � and |zγ | ≤ ργ . To prove Theorem 2.4 we only need
to find a �- and X-independent family {ργ > 0}γ∈PV

for which this series is finite. This is
done in the following proposition which yields some further bonds.

Proposition 4.1 Let ξ = {ξx}x∈V and ρ = {ργ }γ∈P be collections of nonnegative numbers
such that

∑

γ∈P
x∈γ

ργ ξ γ ≤ ξx − 1 (4.19)

for all x ∈ V. Then the reduced correlations are analytic in the interior of the poly-disc
Dρ = {|zγ | ≤ ργ : γ ⊂ �} and satisfy the uniform bound

∣∣∣∣
��\X(−z)

��(−z)

∣∣∣∣ ≤ ξX (4.20)

for all finite �, all X ⊂ � and all z ∈ Dρ . Furthermore, this bound can be systematically
improved in the following way. Consider the operator Tρ on functions F on PV defined by

(TρF)(X) ≡ (α + K−ρF )(X). (4.21)

Then, for all m ≤ n

∣∣∣∣
��\X(−z)

��(−z)

∣∣∣∣ ≤ ��\X(−ρ)

��(−ρ)
≤ (Tρ)

mξX ≤ (Tρ)
n ξX ≤ ξX (4.22)

for all finite �, all X ⊂ � and all z ∈ Dρ .
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Proof We start by observing that the positivity of the coefficients involved in the definition
of Tρ implies that

F(X) ≤ G(X) ∀X ∈ PV ⇐⇒ (TρF)(X) ≤ (TρG)(X) ∀X ∈ PV. (4.23)

Furthermore, for every non-negative function ξ(X) and every positive integer k,

k∑

n=0

[(K−ρ)
nα](X) ≤ (Tk+1

ρ ξ)(X). (4.24)

Claim 1 The series �ρ(X) converge if and only if there exists a function ξ(X) : P ∗
V

−→
[0,∞) such that

(Tρξ)(X) ≤ ξ(X) ∀X ∈ PV. (4.25)

Indeed, sufficiency follows from the fact that, by (4.24) and the monotonicity property
(4.23),

�ρ(X) ≤ lim
k→∞

(Tk
ρξ)(X) ≤ ξ(X). (4.26)

On the other hand, if the series �ρ(X) converge, then (4.25) is satisfied—as equality—with
ξ(X) = �ρ(X).

Claim 2 If the family ξ = {ξx}x∈V satisfies (4.19), then the functions ξ(X) = ξX sat-
isfy (4.25).

We need only to check (4.25) for |X| ≥ 2. In this case

(α + K−ρξ)(X) = ξ(X\{x1}) +
∑

S∈P∗
V

S∩X=∅

ρ{x1}∪Sξ(X ∪ S)

= ξX\{x1}
[

1 +
∑

γ∈P∗
V

x1∈γ

ργ ξ γ

]
. (4.27)

As by (4.19) the last square bracket is less than ξx1 , the claim is proven.

Putting together the two claims we have proven the convergence of �ρ whenever condi-
tion (4.19) is satisfied. As discussed above this yields analyticity in the interior of Dρ . Suc-
cessive applications of Tρ to both sides of (4.25) yield, by the monotonicity property (4.23)
and the leftmost inequality in (4.26), the sequence of bounds

�ρ(X) ≤ (Tρ)
m ξX ≤ (Tρ)

n ξX ≤ ξX.

Due to the bound (4.18) these inequalities prove (4.22). �

5 Kirkwood-Salzburg Formalism for the Abstract Polymer Gas

To conclude, we show how the approach of the previous section can be adapted to prove
Dobrushin criterion (Theorem 2.1) through Kirkwood-Salzburg equations. As the treatment
exactly parallels that for subset gases we shall only indicate the key expressions.
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To derive the K-S equations we start from the polymer-addition identity (2.43)—which
is the same used by Dobrushin in his induction argument. Upon dividing by � ⊃ Z ∪ {γ0}
we obtain

�Z∪γ0(z)

��(z)
= �Z(z)

��(z)
+ zγ0

�Z\�∗(γ0)(z)

��(z)
. (5.1)

Choosing Z = �\X and writing �∗
�(γ0) = �∗(γ0) ∩ � we obtain that the reduced correla-

tions (2.6) satisfy the equations

φ̄�(z,X) = φ̄�(z,X\γ0) − zγ0 φ̄�(z,X ∪ �∗
�(γ0)). (5.2)

These are the Kirkwood-Salzburg equations for the abstract polymer gas. Please note that
here � and X are subsets of the polymer space P as in Sect. 2.

As in the previous section we introduce χ�(X) = 1{X⊂�}, α(X) = 1{|X|=1} and
φ̃�(z,X) = χ�(X)φ̄�(z,X), so to write (5.2) in the form

φ̃�(ρ) = χ�α + χ� K�
ρ φ̃�(ρ) (5.3)

with

(K�
z f )(X) = 1{|X|≥2}f (X\γ0) − zγ0f (X ∪ ��(γ0)) (5.4)

where γ0 is the first polymer in X in some previously chosen enumeration. Note also that
now K�

z depends also on � since we recall that �∗
�(γ0) = {γ ∈ � : γ �∼ γ0}. The goal is to

make sense of

[1 − χ�K�
z ]−1χ�α = χ�

∑

n≥0

[(K�
z )n(χ�α)](X) (5.5)

simultaneously for all �.
We can now transcribe exactly the same steps as in the previous section with the notation

ξX =
∏

γ∈X

ξγ . (5.6)

In the original Gruber-Kunz approach the convergence of (5.5) is proven by showing that Kz

is a contraction on the space Bξ of complex valued functions on polymers with norm ‖f ‖ξ

defined as in (4.9). By a calculation completely analogous to (4.10) we obtain

‖K�
z ‖ξ ≤ sup

γ0∈P

[
1

ξγ0

[
1 + |zγ0 |

∏

γ∈�(γ0)

ξγ

]]
. (5.7)

With the substitution

ξγ = μγ + 1 (5.8)

this yields the convergence condition

sup
γ∈P

ργ

μγ

∏

γ̃ �γ

[1 + μγ̃ ] < 1

which is slightly weaker than Dobrushin condition (2.18)–(2.19).
To improve this condition we proceed as in the proof of Proposition 4.1 and focus rather

on the convergence of the formal series defined by the right-hand-side of (5.5). A necessary
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and sufficient condition for this convergence is the existence of a function ξ : P −→ C such
that

(α + K−ρξ)(X) ≤ ξ(X) (5.9)

for every finite family X ⊂ P . Here K is the operator defined as in (5.4) but replacing ��(γ0)

by �(γ0).

(K�
z f )(X) = 1{|X|≥2}f (X\γ0) − zγ0f (X ∪ ��(γ0)). (5.10)

Assuming the factorization hypothesis (5.6) with ξg > 1 we obtain, as in (4.27),

(α + K−ρξ)(X) ≤ ξ(X)

ξγ0

[1 + ργ0 ξ(�(γ0))]. (5.11)

This bound, combined with condition (5.9) and the substitution (5.8) leads to the following
proposition whose proof is a transcription of the proof of Proposition 4.1.

Proposition 5.1 Let ξ = {ξγ }γ∈P and ρ = {ργ }γ∈P be collections of nonnegative numbers
such that

ργ

∏

γ̃∈�(γ )

ξγ̃ ≤ ξγ − 1 (5.12)

for all γ ∈ P . Then the reduced correlations are analytic in the interior of the poly-disc
Dρ = {|zγ | ≤ ργ : γ ⊂ �} and satisfy the uniform bound

∣∣∣∣
��\X(−z)

��(−z)

∣∣∣∣ ≤ ξX (5.13)

for all finite �, all X ⊂ � and all z ∈ Dρ . Furthermore, this bound can be systematically
improved in the following way. Consider the operator Tρ on functions F on P defined by

(TρF)(X) ≡ (α + K−ρF )(X). (5.14)

Then, for all m ≤ n

∣∣∣∣
��\X(−z)

��(−z)

∣∣∣∣ ≤ ��\X(−ρ)

��(−ρ)
≤ (Tρ)

mξX ≤ (Tρ)
nξX ≤ ξX (5.15)

for all finite �, all X ⊂ � and all z ∈ Dρ .

Note that (5.12) becomes Dobrushin’s criterion (2.18) by substituting ξγ = 1 + μγ .

6 Conclusion

The precedent arguments show that inductive DKP arguments and the use of KS equations
are basically two alternative ways of exploiting the site-addition or polymer-addition iden-
tities (2.42) and (2.43). As the Kirkwood-Salzburg equations are exact relations between
reduced correlations, they potentially include all the information needed to obtain succes-
sive improvements. In fact, our analysis shows where to aim: better bounds require better
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choices of functions ξ(X) satisfying (5.9). Such functions must not, therefore, be of the
factorized form (5.6). Expression (5.11) implies the necessary condition

1 + ργ0ξ(�(γ0)) ≤ ξγ0 (6.1)

for all γ0 ∈ P . In fact, the condition found in [9] is exactly of this form with ξ(X) = �X . We
have been unable, however to prove the validity of (5.9) for such a function ξ for arbitrary X.
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